# Transmission Electron Microscope (TEM): Quick Notes

**Definition:** The Transmission Electron Microscope (TEM) uses a beam of high-energy electrons to visualize thin specimens at molecular and subcellular levels. It provides extremely high resolution compared to light microscopes.

**Principle:** TEM works on the interaction of electrons with matter. Electrons have shorter wavelengths than visible light (de Broglie principle), giving higher resolving power.

# **Key Components:**

- Electron source emits high-energy electrons.
- Electromagnetic lenses focus the electron beam.
- Vacuum column prevents scattering of electrons by air.
- Fluorescent screen/camera records the image.

### **Specimen Preparation Steps:**

- Fixation preserves structures (glutaraldehyde, osmium tetroxide).
- Dehydration removes water using ethanol or acetone.
- Embedding stabilizes with resin.
- Sectioning ultrathin sections (50–100 nm).
- Staining heavy metals (lead, uranium) enhance contrast.

# **Applications:**

- Cell Biology visualize organelles (mitochondria, ER, ribosomes).
- Virology study virus morphology.
- Microbiology examine bacterial cell walls, flagella.
- Pathology detect ultrastructural tissue changes.
- Molecular Biology observe protein complexes and macromolecules.

### Advantages:

- High resolution (0.1–0.2 nm).
- Detailed intracellular visualization.
- Can analyze viruses and macromolecules.

#### Limitations:

- Complex and time-consuming sample preparation.
- Samples must be in a vacuum (non-living).
- Expensive and requires expert operation.

**Conclusion:** TEM provides detailed visualization of biological structures beyond the limits of light microscopy. It is a fundamental tool for studying cellular and molecular ultrastructure despite its

limitations.