

GATE BT Previous Year Solved Question Papers

G.A.T.E. (BT) 2010 BIOTECHNOLOGY

Examination

(Original Question Paper with Answer Key) GRADUATE APTITUDE TEST IN ENGINEERING

For more question papers, please visit: <u>www.easybiologyclass.com</u>

BT : BIOTECHNOLOGY

Duration: Three Hours

HТ

Read the following instructions carefully.

- 1. This question paper contains 16 pages including blank pages for rough work. Please check all pages and report discrepancy, if any.
- 2. Write your registration number, your name and name of the examination centre at the specified locations on the right half of the Optical Response Sheet (ORS).
- 3. Using HB pencil, darken the appropriate bubble under each digit of your registration number and the letters corresponding to your paper code.
- 4. All questions in this paper are of objective type.
- 5. Questions must be answered on the **ORS** by darkening the appropriate bubble (marked A, B, C, D) using HB pencil against the question number on the left hand side of the **ORS**. For each question darken the bubble of the correct answer. In case you wish to change an answer, erase the old answer completely. More than one answer bubbled against a question will be treated as an incorrect response.
- 6. There are a total of 65 questions carrying 100 marks.
- 7. Questions Q.1 Q.25 will carry 1-mark each, and questions Q.26 Q.55 will carry 2-marks each.
- 8. Questions Q.48 Q.51 (2 pairs) are common data questions and question pairs (Q.52, Q.53) and (Q.54, Q.55) are linked answer questions. The answer to the second question of the linked answer questions depends on the answer to the first question of the pair. If the first question in the linked pair is wrongly answered or is un-attempted, then the answer to the second question in the pair will not be evaluated.
- Questions Q.56 Q.65 belong to General Aptitude (GA). Questions Q.56 Q.60 will carry 1-mark each, and questions Q.61 – Q.65 will carry 2-marks each. The GA questions will begin on a fresh page starting from page 11.
- 10. Un-attempted questions will carry zero marks.
- 11. Wrong answers will carry NEGATIVE marks. For Q.1 Q.25 and Q.56 Q.60, % mark will be deducted for each wrong answer. For Q.26 Q.51 and Q.61 Q.65, % mark will be deducted for each wrong answer. The question pairs (Q.52, Q.53), and (Q.54, Q.55) are questions with linked answers. There will be negative marks only for wrong answer to the first question of the linked answer question pair i.e. for Q.52 and Q.54. % mark will be deducted for each wrong answer. There is no negative marking for Q.53 and Q.55.
- 12. Calculator (without data connectivity) is allowed in the examination hall.
- 13. Charts, graph sheets or tables are NOT allowed in the examination hall.
- 14. Rough work can be done on the question paper itself. Additionally, blank pages are provided at the end of the question paper for rough work.

Q.1 -	Q.1 – Q.25 carry one mark each.						
Q.1	Hybridoma technology is used to produce						
	(A) (C)	monoclonal antibodies both monoclonal and polyclonal antibodies	(B) (D)	polyclonal antibodies B cells			
Q.2	Ames	test is used to determine					
	(A) (C)	the mutagenicity of a chemical both mutagenicity and carcinogenicity of a chemical	(B) (D)	carcinogenicity of a chemical toxicity of a chemical			
Q.3	The b	acteria known to be naturally competent	for tran	sformation of DNA is			
	(A) (C)	Escherichia coli Mycobacterium tuberculosis	(B) (D)	Bacillus subtilis Yersinia pestis			
-		-		-			
Q.4				a cloning vector in Gram negative bacteria is			
	(A) (C)	Streptomycin Vancomycin	(B) (D)	Ampicillin Kanamycin			
		-					
Q.5	Progra	am used for essentially local similarity s	earch is				
	(A)	BLAST	(B)	RasMol			
	(C)	ExPASY	(D)	SWISS-PROT			
Q.6	Peptic	lyl transferase activity resides in					
	(A)	16S rRNA	(B)	23S rRNA			
	(C)	5S rRNA	(D)	28S rRNA			
Q.7	In tra	nsgenics, alterations in the sequence of r	nucleotic	le in genes are due to			
	Р. Q. R. S.	Substitution Deletion Insertion Rearrangement					
	(A)	P and Q	(B)	P, Q and R			
	(C)	Q and R	(D)	R and S			
Q.8	During	g transcription					
	(A)	DNA Gyrase introduces negative supercoils and DNA Topoisomerase I removes negative supercoils	(B)	DNA Topoisomerase 1 introduces negative supercoils and DNA Gyrase removes negative supercoils			
	(C)	both DNA Gyrase and DNA Topoisomearse I introduce negative supercoils	(D)	both DNA Gyrase and DNA Topoisomearse 1 remove negative supercoils			
Q.9	Under	r stress conditions bacteria accumulate					
	(A) (C)	ppGpp (Guanosine tetraphosphate) both ppGpp and pppGpp	(B) (D)	pppGpp (Guanosine pentaphosphate) either ppGpp or pppGpp			

2/16

Please visit: www.easybiologyclass.com for:

- Lecture Notes
- Biology PPTs
- Biology MCQs
- > Online Mock Tests (MCQ)
- Practical Aids
- Model Question Papers of NET, GATE, DBT, ICMR Exams
- CSIR NET Life Sciences Previous Year Question Papers
- GATE Previous Year Question Papers
- DBT BET JRF Previous Year Question Papers
- ICMR JRF Entrance Exam Resources
- Higher Scondary Biology Resources
- Jobs Notifications
- Higher Studies in Biology / Life Sciences
- Seminar / Workshop/ Conference Notifications
- > And many more....

.

_	_
Я	т
-	

Q .10	An example for template independent DNA polymerase is				
	(A) (C)	DNA Polymerase I Terminal deoxynucleotidyl transferase	(B) (D)	RNA polymerase DNA polymerase III	
Q.11	Whic	h one of the following DOES NOT below	g to the	domain of Bacteria?	
	(A) (C)	Cyanobacteria Bacteroids	(B) (D)	Proteobacteria Methanobacterium	
Q.12	Interf	feron-β is produced by			
	(A) (C)	bacteria infected cells both virus and bacteria infected cells	(B) (D)	virus infected cells fungi infected cells	
Q.13		ture of bacteria is infected with bacteriop e cell infected with 3 phages is	hage at a	a multiplicity of 0.3. The probability of a	
	(A)	0.9	(B)	0.27	
	(C)	0.009	(D)	0.027	
Q.14	A nec	onatally thymectomized mouse, immunize	d with p	protein antigen shows	
	(A)	both primary and secondary	(B)	only primary response to the antigen	
	(C)	responses to the antigen delayed type hypersensitive reactions	(D)	no response to the antigen	
Q.15	Lymp	phocytes interact with foreign antigens in			
	(A)	Bone marrow	(B)	Peripheral blood	
	(C)	Thymus	(D)	Lymph aodes	
Q.16	Soma	tic cell gene transfer is used for			
	Q. R.	transgenic animal production transgenic diploid cell production <i>in-vitro</i> fertilization classical breeding of farm animals			
	(A)	P, R and S	(B)	P. Q and R	
	(C)	P and R	(D)	P only	
Q.17	Acce	ssion number is a unique identification as	isigned t	oa	
	(A)	single database entry for DNA/Protein	(B)	single database entry for DNA only	
	(C)	single database entry for Protein only	(D)	multiple database entry for DNA/Protein	
Q.18	Expre	essed Sequence Tag is defined as			
	(A)	a partial sequence of a codon randomly selected from cDNA Jibrary	(B)	the characteristic gene expressed in the cell	
	(Ĉ)	the protein coding DNA sequence of a gene	(D)	uncharacterized fragment of DNA presence in the cell	

Q.19	In a chemostat operating under steady state, a bacterial culture can be grown at dilution rate higher than maximum growth rate by					
	(A)		cell recycling	(B)	using sub-optimal temperature	
	(C)	рН сус		(D)	substrate feed rate cycling	
Q.20	Durin	g lactic a	cid fermentation, net yield o	f ATP and	NADH per mole of glucose is	
	(A)	2 ATP	and 2 NADH	(B)	2 ATP and 0 NADH	
	(C)	4 ATP	and 2 NADH	(D)	4 ATP and 0 NADH	
Q.21	Identi	fy the en	zyme that catalyzes the follo	wing react:	ion	
	α-Ke	oglutarat	e + NADH + NH₄* + H*	? •	Glutamate + NAD* + H ₂ O	
	(A)	Giulan	ate synthetase	(B)	Glutamate oxoglutarate aminotransferase	
	(C)	Glutan	ate dehydrogenase	(D)	α-ketoglutarate deaminase	
Q.22	The degree of inhibition for an enzyme catalyzed reaction at a particular inhibitor concentration is independent of initial substrate concentration. The inhibition follows					
	(A)	compe	titive inhibition	(B)	mixed inhibition	
	(C)	un-con	spetitive inhibition	(D)	non-competitive inhibition	
Q.23	Oxidation reduction reactions with positive standard redox potential (ΔE^0) have					
	(A)	positiv	e ∆G°	(B)	negative ΔG^0	
	(C)	positiv	e ΔE'	(D)	negative ΔE^*	
Q.24	Nuclease-hypersensitive sites in the chromosomes are sites that appear to be					
	(A)		H4 histone free	(B)	H1 and H2 histone free	
	(C)	H3 and	H4 histone free	(D)	Nucleosome free	
Q.25	The f	ormation	of peptide cross-links betwe	en adjacen	t glycan chains in cell wall synthesis is calle	
	(A)	Transg	lycosylation	(B)	Autoglycosylation	
	(C)	Autope	eptidation	(D)	Transpeptidation	
.26 -	Q.55	carry (wo marks each.			
Q.26	Deter Asser			n plants is	ng Assertion (a) and the Reason (r) a two step process comprising of embry tion.	
	Reaso	n:	Embryo initiation is indepe	ndent of th uction requ	the presence of 2, 4-dichlorophenoxyacetic dires a high concentration of 2, 4-	
	(A)	both ta) and (r) are true and (r) is I	he (B) both (a) and (r) are true and (r) is not the	
	(A)		reason for (a)		correct reason for (a)	

...

An immobilized enzyme being used in a continuous plug flow reactor exhibits an effectiveness Q.27 factor (η) of 1.2. The value of η being greater than 1.0 could be apparently due to (A) substrate inhibited kinetics with (B) external pore diffusion limitation internal pore diffusion limitation (C)sigmoidal kinetics (D)unstability of the enzyme Q.28 A roller bottle culture vessel perfectly cylindrical in shape having inner radius (r) = 10 cm and length (I) = 20 cm was fitted with a spiral film of length (L) = 30 cm and width (W) = 20 cm. If the film can support 10⁵ anchorage dependent cells per cm², the increase in the surface area after fitting the spiral film and the additional number of cells that can be grown respectively are 1200 cm^2 and 12×10^2 cells 600 cm² and 6×10^7 cells (A) (B) (C) 600 cm² and 8300 cells (D) 1200 cm² and 8300 cells Q.29 Determine the correctness or otherwise of the following Assertion (a) and the Reason (r) Assertion: MTT assay is used to determine cell viability based on the principle of colour formation by DNA fragmentation. Reason: MTT assay is used to determine cell viability based on the colour development by converting tetrazolium soluble salt to insoluble salt. (A) both (a) and (r) are true and (r) is the (B) both (a) and (r) are true and (r) is not the correct reason for (a) correct reason for (a) (C)(a) is true but (r) is false (D) (a) is false but (r) is true Q.30 Match the following antibiotics in Group I with their mode of action in Group II Group I Group II

	P. ChloramphenicolQ. NorfloxacinR. PuromycinS. Rifampicin	 Binds to DNA gyrase Binds to RNA Polymerase Inhibits peptidyl transferase Mimics aminoacyl-tRNA 		
I	P-1, Q-3, R-2, S-4	(B)	P-3, Q-1, R-2, S-4	
	P-3, Q-1, R-4, S-2	(D)	P-4, Q-2, R-3, S-1	

Q.31 Match the chemicals in Group I with the possible type/class in Group II

	<u>Group I</u>	<u>Group II</u>		
	P. PicloramQ. ZeatinR. ThiamineS. Glutamine		 Vitamin Auxin Amino Acid Cytokinin 	
(A) (C)	P-2, Q-4, R-1, S-3 P-3, Q-1, R-2, S-4	(B) (D)	P-4, Q-1, R-2, S-3 P-4, Q-2, R-1, S-3	

ВT

(A) (C) Q.32 Match Group J with Group II

	<u>Group I</u>	Group 11			
	P. Fibronectin	L Uptake of amino acids and glucose			
	Q. Insulin	2. Trypsin inhibitor			
	R. α-Macroglobulin	3. Binds iron			
	S. Transferrin	4. Cell attachment to substratum			
(A)	P-2, Q-1, R-4, S-3	(B) P-3, Q-2, R-1, S-4			
(C)	P-4, Q-2, R-1, S-3	(D) P-4, Q-1, R-2, S-3			

Q.33 Match the promoters listed in Group I with the tissues listed in Group II

	<u>Group 1</u>	<u>Group II</u>		
	P. α-Amylase		1. Endosperm	
	Q. Glutenin	2. Tuber 3. Aleurone		
	R. Phaseoflin			
	S. Patatin		4. Cotyledon	
(A)	P-3, Q-1, R-4, S-2	(B)	P-3, Q-4, R-1, S-2	
(C)	P-4, Q-2, R-1, S-3	(D)	P-1, Q-3, R-2, S-4	

Q.34 Consider the following statements,

I. T4 DNA ligase can catalyze bluat end ligation more efficiently than E coli DNA ligase II. The ligation efficiency of T4 DNA ligase can be increased with PEG and ficoll.

(A)	only I is true	(B)	both I and II are true
(C)	only II is true	(D)	I is true and II is false

Q.35 The turnover numbers for the enzymes, E1 and E2 are 150 s⁻¹ and 15 s⁻¹ respectively. This means

(A)	E1 binds to its substrate with higher
	affinity than E2

- (C) is always greater than that of E2
- (B) The velocity of reactions catalyzed by E1 and E2 at their respective saturating substrate concentrations could be equal, if concentration of E2 used is 10 times that of E1
- The velocity of E1 catalyzed reaction (D) The velocity of E1 catalyzed reaction at a particular enzyme concentration and saturating substrate concentration is lower than that of E2 catalyzed reaction under the same conditions

Ι.

35-45 kb

5 – 25 kb

Group II (Maximum DNA packaging)

Q.36 Match the items in Group I with Group II

Group [(Vectors)

- Ρ. λ phage
- Bacterial Artificial Chromosomes (BACs) 2. 100-300 kb **O**.
- P1 derived Artificial Chromosomes (PACs) R. 3. $\leq 300 \text{ kb}$
- **S**. λ cosmid

(A)	P-3, Q-4, R-1, S-2	(B)	P-1, Q-3, R-2, S-4
(C)	P-4, Q-3, R-2, S-1	(D)	P-1, Q-2, R-3, S-4

Q.37 Match Group I with Group II

		<u>Group I</u> P. Staphylococcus aureus Q. Candida albicans R. Mycobacterium tuberculosis S. Lactobacillus lactis	<u>Group II</u> 1. Biofilms 2. Bacteriocins 3. Methicillin resistance 4. Isoniazid	
	(A) (C)	P-1, Q-4, R-2, S-3 P-3, Q-1, R-4, S-2	(B) (D)	P-2. Q-3, R-1, S-4 P-1, Q-2, R-4, S-3
Q.38	A mut	ant Ga protein with increased GTPase	activity v	vould
	(A) (C)	not bind to GTP show increased signaling	(B) (D)	not bind to GDP show decreased signaling
Q.39	Dizyg twins	otic twins are connected to a single pla	acenta dui	ring their embryonic development. These
	(A) (C)	have identical MHC haplotypes have identical T cells	(B) (D)	have identical T _H cells can accept grafts from each other (both (A) and (B))
Q.40	The d ligand	issociation constant K4 for ligand bir required for occupying 10% of recept	iding to t lors is	he receptor is 10 ⁻⁷ M. The concentration of

(A)	10 ⁻⁶ M	• •	10 ⁻⁷ M
(C)	10 ⁻⁸ M	(D)	10 ^{°°} M

Q.41 Receptor R is over expressed in CHO cells and analysed for expression. 6×10^7 cells were incubated with its radioactive ligand (specific activity 100 counts per picomole). If the total counts present in cell pellet was 1000 cpm, the average number of receptors R per cell is (assume complete saturation of receptors with ligand and one ligand binds to one receptor)

(A)	104	(B)	
(C)	10°	(D)	107

Q.42 A cell has five molecules of a rare mRNA. Each cell contains 4×10^5 mRNA molecules. How many clones one will need to screen to have 99% probability of finding at least one recombinant cDNA of the rare mRNA, after making cDNA library from such cell?

(A)	4.50×10^{5}	(B)	3.50×10^{5}
(C)	4.20×10^{5}	(D)	4.05×10^{5}

Group I		Group II		
P. Gluconic acid Q. L – Lysine R. Dextran S. Cellulase		 Leuconostoc mesenteroids Aspergillus niger Brevibacterium flavum Trichoderma reesei 		
(A)	P-2, Q-1, R-3, S-4	(B)	P-1, Q-3, R-4, S-2	
(C)	P-2, Q-3, R-1, S-4	(D)	P-3, Q-2, R-4, S-1	

Q.44 Determine the correctness or otherwise of the following Assertion (a) and the Reason (r)

Assertion: Cytoplasmic male sterility (cms) is invariably due to defect(s) in mitochondrial function.

Reason: cms can be overcome by pollinating a fertility restoring (Rf) plant with pollen from a non cms plant.

(A)	both (a) and (r) are true and (r) is the	(B)	both (a) and (r) are true and (r) is not the
	correct reason for (a)		correct reason for (a)
(C)	(a) is false but (r) is true	(D)	(a) is true but (r) is false

Q.45 Thermal death of microorganisms in the liquid medium follows first order kinetics. If the initial cell concentration in the fermentation medium is 10^{4} cells / ml and the final acceptable contamination level is 10^{-3} cells, for how long should $1m^{3}$ medium be treated at temperature of 120° (thermal deactivation rate constant = 0.23 / min) to achieve acceptable load?

(A)	48 min	(B)	11 min
(C)	110 min	(D)	20 min

Q.46 True breeding *Drosophila* flies with curved wings and dark bodies were mated with true breeding short wings and tan body *Drosophila*. The F I progeny was observed to be with curved wings and tan body. The F I progeny was again allowed to breed and produced flies of the following phenotype, 45 curved wings tan body, 15 short wings tan body, 16 curved wings dark body and, 6 short wings dark body.

The mode of inheritance is

(A)	Typical Mendelian with curved
	wings and tan body being dominant

- (C) Mendelian with suppression of phenotypes
- Q.47 Match Group I with Group II Group I
 - P. Real Time-PCR
 - Q. 2-D Electrophoresis
 - R. Affinity chromatography
 - S. Microarray
 - (A) P-1, Q-2, R-4, S-3
 - (C) P-2, Q-4, R-3, S-1

- (B) Typical non-Mendelian with curved wings and tan body not following any pattern
- (D) Mendelian with single crossover

<u>Group II</u>

- 1. Biochips
- 2. Syber Green
- 3. Antibody linked sephrose beads
- 4. Ampholytes
- (B) P-2, Q-3, R-4, S-1
- (D) P-3, Q-2, R-1, S-4

Common Data Questions

Common Data for Questions 48 and 49:

A culture of *Rhizobium* is grown in a chemostat (100 m³ bioreactor). The feed contains 12 g / L sucrose, K, for the organism is 0.2 g / L and $\mu_{m} = 0.3 h^{-4}$.

Q.48 The flow rate required to result in steady state concentration of sucrose as 1.5 g / L in the bioreactor will be

(A)	15 m ³ h ⁻¹	(B)	26 m ³ h ⁻¹
(C)	2.6 m ³ h ⁻¹	(D)	150 m ³ h ⁻¹

Q.49 If $Y_{vs} = 0.4 \text{ g} / \text{g}$ for the above culture and steady state cell concentration in the bioreactor is 4 g / Lthe resulting substrate concentration will be

(A)	2g/L	(B)	8g/L
(C)	4g/L	(D)	6g/L

Common Data for Questions 50 and 51:

The width of the lipid bilayer membrane is 30 Å. It is permeated by a protein which is a right handed α -helix.

Q.50 The number of α -helical turns permeating the membrane is

(A)	5.6 turns	(B)	3.5 turns
(C)	6.5 turns	(D)	5.0 turns

Q.51 The number of amino acid residues present in the protein is

(A)	15	(B)	18
(C)	17	(D)	- 20

Linked Answer Questions

Statement for Linked Answer Questions 52 and 53:

The standard redox potential values for two half-reactions are given below. The value for Faraday's constant is 96.48 kJ V^{-1} mol⁻¹ and Gas constant R is 8.31 J K⁻¹ mol⁻¹.

NAD'	+	H⁺	+ 2e"	↔ NADH	– 0.315 V
FAD	÷	2H*	+ 2e ⁻	\leftrightarrow FADH ₂	– 0.219 V

Q.52 The ΔG^0 for the oxidation of NADH by FAD is

(A)	– 9.25 kJ mol ⁻¹	(B)	– 103.04 kJ_mol ⁻¹
(C)	+ 51.52 kJ mol 1	(D)	– 18.5 kJ. mol ^{*1}

Q.53 The value of $\Delta G'$, given K_{eq} as 1.7, at 23°C will be

(A)	17.19 kJ mol ⁻¹	(8)	-19.8 kJ mol ⁻ⁱ
(C)	+ 52.82 kJ mol ⁻¹	(D)	-117.07 kJ mol ⁻¹

Please visit: www.easybiologyclass.com for:

- Lecture Notes
- Biology PPTs
- Biology MCQs
- > Online Mock Tests (MCQ)
- Practical Aids
- Model Question Papers of NET, GATE, DBT, ICMR Exams
- CSIR NET Life Sciences Previous Year Question Papers
- GATE Previous Year Question Papers
- DBT BET JRF Previous Year Question Papers
- ICMR JRF Entrance Exam Resources
- Higher Scondary Biology Resources
- Jobs Notifications
- Higher Studies in Biology / Life Sciences
- Seminar / Workshop/ Conference Notifications
- > And many more....

Statement for Linked Answer Questions 54 and 55:

During bioconversion of sucrose to citric acid by Aspergillus niger final samples of 6 batches of fermentation broth were analyzed for citric acid content. The results (in g/L) were found to be 47.3, 52.2, 49.2, 52.4, 49.1 and 46.3.

Q.54 The mean value of acid concentration will be

(A)	49.4	(B)	51.0
(C)	48.2	(D)	50.8

Q.55 The standard deviation for the above results is

(A)	2.49	(B)	3.0
(C)	1.84	(D)	5.91

General Aptitude (GA) Questions

Q.56 - Q.60 carry one mark each.

- Q.56 Which of the following options is the closest in meaning to the word below: Circuitous
 - (A) cyclic
 - (B) indirect
 - (C) confusing
 - (D) crooked
- Q.57 The question below consists of a pair of related words followed by four pairs of words. Select the pair that best expresses the relation in the original pair. Unemployed : Worker
 - (A) fallow : land
 - (B) unaware : sleeper
 - (C) wit : jester
 - (D) renovated : house
- Q.58 Choose the most appropriate word from the options given below to complete the following sentence:

If we manage to ______ our natural resources, we would leave a better planet for our children.

- (A) uphold
- (B) restrain
- (C) cherish
- (D) conserve
- Q.59 Choose the most appropriate word from the options given below to complete the following sentence:

His rather casual remarks on politics ______ his lack of seriousness about the subject.

- (A) masked
- (B) belied
- (C) betrayed
- (D) suppressed
- Q.60 25 persons are in a room. 15 of them play hockey, 17 of them play football and 10 of them play both hockey and football. Then the number of persons playing neither hockey nor football is:
 - (A) 2 (B) 17 (C) 13 (D) 3
- Q.61 Q.65 carry two marks each.
- Q.61 Modern warfare has changed from large scale clashes of armies to suppression of civilian populations. Chemical agents that do their work silently appear to be suited to such warfare; and regretfully, there exist people in military establishments who think that chemical agents are useful tools for their cause.

Which of the following statements best sums up the meaning of the above passage:

- (A) Modern warfare has resulted in civil strife.
- (B) Chemical agents are useful in modern warfare.
- (C) Use of chemical agents in warfare would be undesirable.
- (D) People in military establishments like to use chemical agents in war.

				ß
If 137 + 276 = 435 how much is 731 + 672?				
(A) 534	(B) 1403	(C) 1623	(D) 1513	
5 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 25 days; 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled and 5 unskilled workers, how long will it take to build the wall?				
(A) 20 days	(B) 18 days	(C) 16 days	(D) 15 days	
Given digits 2, 2, 3, 3, 3, 4, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can be formed?				
(A) 50	(B) 51	(C) 52	(D) 54	
 Hari (H), Gita (G). Irfan (1) and Saira (S) are siblings (i.e. brothers and sisters). All were born on 1st January. The age difference between any two successive siblings (that is born one after another) is less than 3 years. Given the following facts: Hari's age + Gita's age > Irfan's age + Saira's age. The age difference between Gita and Saira is 1 year. However, Gita is not the oldest and Saira is not the youngest. There are no twins. In what order were they born (oldest first)? 				
	 (A) 534 5 skilled workers 10 unskilled worker 5 unskilled worker (A) 20 days (A) 20 days Given digits 2, 2, formed? (A) 50 Hari (H), Gita (G 1st January. The a is less than 3 year i. ii. 	 (A) 534 (B) 1403 5 skilled workers can build a wall in 20 10 unskilled workers can build a wall 5 unskilled workers, how long will it takes (A) 20 days (B) 18 days (Given digits 2, 2, 3, 3, 3, 4, 4, 4, 4 how m formed? (A) 50 (B) 51 Hari (H), Gita (G). Irfan (I) and Saira (S 1st January. The age difference between a is less than 3 years. Given the following f i. Hari's age + Gita's age ii. The age difference between a oldest and Saira is not iii. There are no twins. 	 (A) 534 (B) 1403 (C) 1623 5 skilled workers can build a wall in 20 days; 8 semi-skilled world unskilled workers can build a wall in 30 days. If a team f 5 unskilled workers, how long will it take to build the wall? (A) 20 days (B) 18 days (C) 16 days (A) 20 days (B) 18 days (C) 16 days Given digits 2, 2, 3, 3, 3, 4, 4, 4, 4 how many distinct 4 digit number formed? (A) 50 (B) 51 (C) 52 Hari (H), Gita (G). Irfan (I) and Saira (S) are siblings (i.e. brother 1st January. The age difference between any two successive sibling is less than 3 years. Given the following facts: i. Hari's age + Gita's age > Irfan's age + Saira's ii. The age difference between Gita and Saira is 1 oldest and Saira is not the youngest. iii. There are no twins. 	 (A) 534 (B) 1403 (C) 1623 (D) 1513 5 skilled workers can build a wall in 20 days; 8 semi-skilled workers can build a wall in 22 10 unskilled workers can build a wall in 30 days. If a team has 2 skilled, 6 semi-skilled 5 unskilled workers, how long will it take to build the wall? (A) 20 days (B) 18 days (C) 16 days (D) 15 days Given digits 2, 2, 3, 3, 4, 4, 4 how many distinct 4 digit numbers greater than 3000 can 1 formed? (A) 50 (B) 51 (C) 52 (D) 54 Hari (H), Gita (G). Irfan (I) and Saira (S) are siblings (i.e. brothers and sisters). All were b 1st January. The age difference between any two successive siblings (that is born one after aris less than 3 years. Given the following facts: i. Hari's age + Gita's age > Irfan's age + Saira's age. ii. The age difference between Gita and Saira is 1 year. However, Gita is not oldest and Saira is not the youngest. iii. There are no twins.

(A) HSIG	(B) SGHI	(C) IGSH	(D) IHSG
----------	----------	----------	----------

END OF THE QUESTION PAPER

÷

Please visit: www.easybiologyclass.com for:

- Lecture Notes
- Biology PPTs
- Biology MCQs
- > Online Mock Tests (MCQ)
- Practical Aids
- Model Question Papers of NET, GATE, DBT, ICMR Exams
- CSIR NET Life Sciences Previous Year Question Papers
- GATE Previous Year Question Papers
- DBT BET JRF Previous Year Question Papers
- ICMR JRF Entrance Exam Resources
- Higher Scondary Biology Resources
- Jobs Notifications
- Higher Studies in Biology / Life Sciences
- Seminar / Workshop/ Conference Notifications
- > And many more....

