

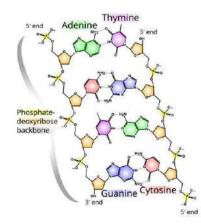
EASY BIOLOGY CLASS

Free Online Tutorials in Biology/Life & Sciences

Difference between DNA and RNA

Introduction

Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are essential nucleic acids in biological systems, performing critical roles in the storage, transmission, and execution of genetic information. DNA is primarily responsible for the long-term storage of genetic information and is the blueprint for all biological functions. RNA, on the other hand, acts as a messenger and plays various roles in the expression of genetic information. This article discusses the similarities and difference between DNA and RNA with a comparison table. You can download this article as PDF from the download link provided below.


Difference between DNA and RNA

Aspect	DNA	RNA
Full Name	Deoxyribonucleic Acid	Ribonucleic Acid
Sugar	Deoxyribose	Ribose
Component		
Nitrogenous	Adenine, Thymine, Cytosine,	Adenine, Uracil, Cytosine,
Bases	Guanine	Guanine
Strand Type	Typically, double-stranded	Typically, single-stranded
Function	Long-term storage and	Involved in protein synthesis,
	transmission of genetic	gene regulation, and catalysis
	information	
Stability	Highly stable under alkaline	Less stable under alkaline
	conditions	conditions
Presence of 2'-	Absent in deoxyribose	Present in ribose (decreases
Hydroxyl	(increases stability)	stability)
Group		
Replication	Self-replicating	Synthesized from DNA template
		during transcription
Enzymes for	DNA polymerases	RNA polymerases
Synthesis		

EASY BIOLOGY CLASS

* Biology Made Easy * Free Online Tutorials in Biology/Life & Sciences		
Location in	Primarily in the nucleus; small	Found in the nucleus,
Eukaryotes	amounts in mitochondria	cytoplasm, ribosomes
Base Pairing	Adenine pairs with Thymine,	Adenine pairs with Uracil,
Rules	Cytosine pairs with Guanine	Cytosine pairs with Guanine
Molecular	Generally higher molecular	Generally lower molecular
Weight	weight due to longer chains	weight due to shorter chains
Types	One major type, although	Multiple types (mRNA, tRNA,
	different forms (e.g.,	rRNA, etc.)
	mitochondrial DNA)	
Role in	Direct carrier of hereditary	Plays a role in the expression of
Heredity	information	genetic information
Sensitivity to	Less susceptible to UV-induced	More susceptible to UV-induced
UV Light	damage	damage
Existence of	Lacks catalytic activity	Some RNA molecules exhibit
Catalytic		catalytic activity (ribozymes)
Activity		

Similarities Between DNA and RNA

- **Nucleic Acid Composition**: Both DNA and RNA are polymers of nucleotides, composed of a sugar, phosphate group, and nitrogenous bases.
- **Genetic Information Carriers**: DNA and RNA both carry genetic information essential for the functioning of organisms, with DNA holding the long-term code and RNA translating this code into proteins.
- **Base Pairing**: In both DNA and RNA, adenine forms hydrogen bonds with complementary bases, although thymine in DNA is replaced by uracil in RNA.
- **Phosphodiester Bonds**: Both nucleic acids are formed through phosphodiester bonds between the 5' phosphate group of one nucleotide and the 3' hydroxyl group of the next.
- **Involvement in Protein Synthesis**: DNA stores the genetic instructions, and RNA translates these instructions into proteins during protein synthesis.

Free Online Tutorials in Biology/Life & Science

• **Presence of Genetic Mutations**: Both DNA and RNA can undergo mutations, leading to changes in genetic information that can be inherited or affect gene expression.

Please visit www.easybiologyclass.com for:

- Short Notes in PDF
- > PPTs
- Comparative Study (Notes)
- Biology Exams (Competitive Exam in Biology)
- Question Bank (Previous Year Question Papers)
- Mock Tests (Online Tests)
- > MCQs
- Practical / Laboratory Protocols
- Higher Secondary Biology (Plus 1)
- Higher Secondary Biology (Plus 2)

Summary: DNA and RNA are fundamental nucleic acids in biological systems, distinguished by their sugar components, nitrogenous bases, and functional roles. While DNA is the stable genetic repository, RNA serves as the versatile intermediary in gene expression and regulation. Despite their differences, both share essential similarities, such as their nucleotide composition, involvement in genetic information transfer, and role in protein synthesis.

