

Difference between Mitosis and Meiosis

Introduction

Mitosis and meiosis are fundamental processes of cell division that facilitate the growth, development, and reproduction of organisms. Mitosis is a process of nuclear division that results in the formation of two genetically identical daughter cells from a single parent cell, primarily for growth and tissue repair in multicellular organisms. Meiosis, on the other hand, is a specialized form of cell division that reduces the chromosome number by half, producing four genetically distinct gametes or spores, essential for sexual reproduction in eukaryotes. Here we discuss the similarities and difference between mitosis and meiosis with a comparison table. You can download the notes as PDF from the download link provided below.

Aspect	Mitosis	Meiosis
Purpose	Growth, repair, and asexual	Sexual reproduction – production of
	reproduction	gametes
Number of	One division	Two sequential divisions (Meiosis I
Divisions		and Meiosis II)
Phases	Prophase, Metaphase,	Meiosis-I: Prophase I, Metaphase I,
	Anaphase, Telophase	Anaphase I, Telophase I
		Meiosis-II: Prophase II, Metaphase II,
		Anaphase II, Telophase II
Number of	Two daughter cells are	Four daughter cells are formed
Daughter Cells	formed	
Genetic	Genetically identical to the	Genetically diverse, each with half the
Composition of	parent cell	chromosome number
Daughter Cells		
Chromosome	Maintains the same	Reduces the chromosome number by
Number	chromosome number as the	half (haploid)
	parent cell (diploid)	
Occurrence	Occurs in somatic cells	Occurs in germ cells (gametes)
Homologous	No pairing of homologous	Homologous chromosomes pair and
Chromosome	chromosomes occurs	undergo synapsis
Pairing		
Crossing Over	No crossing over occurs	Crossing over occurs during Prophase
		I, leading to genetic recombination
Centromere	Centromeres divide during	Centromeres do not divide during
Division	anaphase	Meiosis I but do during Meiosis II
Synapsis of	Does not occur	Occurs during Prophase I
Homologs		

Difference between Mitosis and Meiosis

Free Online Tutorials in Biology/Life & Sciences

Spindle Formation	Occurs once	Occurs twice (one in meiosis I and
		another in meiosis II)
Daughter Cell	Diploid (2n)	Haploid (n)
Chromosome		
Number		
Genetic Variation	No genetic variation	Genetic variation introduced through
	introduced	crossing over and independent
		assortment
Cytokinesis	Occurs once after mitosis	Occurs twice, once after each meiotic
		division
Chromosome	Chromosomes line up	Homologous chromosomes line up as
Behavior	individually on the	tetrads on the metaphase plate during
	metaphase plate	Meiosis I
Disjunction	Sister chromatids separate	Homologous chromosomes separate
	during anaphase	during Anaphase I; sister chromatids
		separate during Anaphase II

Similarities Between Mitosis and Meiosis

- Basic Process of Division: Both mitosis and meiosis involve the division of a parent cell into daughter cells through stages that include prophase, metaphase, anaphase, and telophase.
- Requirement of DNA Replication: Both processes are preceded by a single round of DNA replication during the S phase of the cell cycle.
- Role of Spindle Apparatus: In both processes, the spindle apparatus is crucial for the separation of chromosomes and their movement to opposite poles of the cell.

- Involvement of Cytokinesis: Both processes conclude with cytokinesis, where the cytoplasm divides, resulting in separate daughter cells.
- Phases of Division: Both mitosis and meiosis include similar phases, albeit in meiosis the sequence is repeated with modifications during meiosis I and II.

Summary

Mitosis and meiosis are critical cellular processes with distinct roles in growth, development, and reproduction. Mitosis ensures the maintenance of genetic consistency across somatic cells, facilitating organismal growth and repair. In contrast, meiosis introduces genetic diversity through the production of haploid gametes, essential for sexual reproduction and evolution.

Please visit www.easybiologyclass.com for:

- Short Notes in PDF
- > PPTs
- Comparative Study (Notes)
- Biology Exams (Competitive Exam in Biology)
- Question Bank (Previous Year Question Papers)
- Mock Tests (Online Tests)
- > MCQs
- Practical / Laboratory Protocols
- Higher Secondary Biology (Plus 1)
- Higher Secondary Biology (Plus 2)

EASY BIOLOGY CLASS * Biology Made Easy *					Free Online Tutorials in Biology/Life 9 Sciences			
Home	Lecture Notes	РРТ	MCQ	Question Bank	Mock Tests	+1 & +2	More	
Biology / Life Sciences Online Resources, Lecture Notes				Botany				
and Study Materials for Students and Teachers					Zoology			
NOTES IN BIOLOGY						Biochemistry		
						Molecular Biology		
Dear Biology Aspirants, Welcome to Easybiologyclass. Here you can find the topic wise list of Short and Easy Notes					Biotechnology			
in Biology / Life Sciences. Please select a category to explore the contents beneath each			Bioin	ormatics				
topic. Please feel free to contact the Admin if you have any doubts or queries. You may also			Micro	obiology				
like to explore the other learning resources in EasyBiologyClass such as <i>Biology PPT</i> <i>Question Bank</i> <i>Biology MCQ</i> <i>Mock Tests</i> <i>Practical Notes</i> etc.				Immunology				